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ABSTRACT

We show that a functional equation in En:

t
x(t) = f W(t,s)x(s)ds

with piecewise continuous m x m matrix kernel W(t,s) satisfying, for
T, 9, p > 0

W(t + T, s + T) = W(t,s)

NW(t,s)I 4 e-P(t-s),ts real

admits, for each 0 < V, a decomposition, applicable to a wide class of

solutions x(t) for t > 0,

x(t) - XF(t) + X8 (t)

where, for some B - B(O),

Ix a(t)1 4 Be- , t P 0

and xF(t) is a linear combination of "Floquet type" solutions

tqe tp(t),q() 0) e z, X e C, Re(X) > -,

p(t) being a continuous n-vector function such that

p(t + T) = p(t)
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The theorem is proved by converting the above equations to a convolution type

linear recursion equation

0I Qk+, = o

k=-m

2.in L;[O,T] and studying this equation by transform methods. In the process

we examine some general properties of equations

) Qkxk+j  o
k=-ao

within the same transform framework.
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SIGNIFICANCE AND EXPLANATION

This report provides the theoretical background for etk earlier report

1--SR -*2"1, (Frequency/Period Estimation and Adaptive Rejection of Sinusoidal

Disturbances"). It also lays the foundation for a new type of transform

analysis for linear recursion equations which appears to be quite useful in

analyzing their spectral properties. j'/ / -. t.'- !-

1z  (

Acces!Ion 'For

i- ''i ' ,, I C;1 I

! Avn i1 .b11it.Y d __

I

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the author of this report.

% . N %
, .,. J. .% '.'.. . .. -.... ... - .. . _.- ,,-. . , .. .,.. . . .. . ,- . . .



A FLOQUET DECOMPOSITION FOR VOLTERRA EQUATIONS WITH PERIODIC
KERNEL AND A TRANSFORM APPROACH TO LINEAR RECURSION EQUATIONS

David L. Russell*

MIPAC Facility Document No. 2

I. STATEMENT OF PRINCIPAL RESULTS

The present work developed, originally, in a supporting role in connection with the

stability of certain adaptive frequency rejection procedures for linear control systems

(16]), where small variations in the estimate, T(t), of the period, T, of the incoming

disturbance, were seen to satisfy an equation of the type appearing in Theorem 1, below,

with m - 1. The specific question of interest concerned whether or not the asymptotic

stability of such a system can be decided on the basis of knowledge of "Floquet type"

solutions

of the system, where q is a non-negative integer, A a complex number, and pit) a

continuous T-periodic m-vector function. This is an important question for applications

because such solutions are the easiest to identify by computational procedures. The

question is answered in the affirmative by

fbemor. I. Consider the vector functional equation in Em:

t
x(t) f f W(t,s)x(s)ds (1.2)

where W(t,s) is a piecewise continuous m x m matrix function satisfying

IW(t,s)l 4 Ce- ( t-s), -w < s 4 t , (1.3)

for positive numbers Q, p and is periodic in the sense that

W(t + T, s + T) = W(t,s) (1.4)
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research was completed while the author was visiting at the University of Florida,
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for a certain positive minimal period T. Then, given any real v < U, a solution x(t)

of (1.2) corresponding to an initial "history"

x(-s), 0 4 s <

with

Ix(-s)l 4 Ze Vs 0 0 s < (1.5).m

foz some positive F and real v < U (which may depend on x) can be written as

x(t) - XF(t) + x0(t) , (1.6)

where xF(t) is a finite linear combination of Floquet type solutions with Re(X) > -.0

and

Ix 0(t)l < Se- ot ,  t ) 0 (1.7)

where B is a positive number:

B - B0 mU x )2 do)1
/ 2 .

0

In particular, since 8 may be taken to be positLve,

lim Ix(t)I - 0

for all solutions x(t) as described if and only if Rep.) < 0 for all Floquet type

solutions teAtep(t).

Remarks. The condition (1.5), or something similar, is necessary to ensure the convergence

of the integral in (1.2). it is trivially satisfied, of course, if x(-s) S 0 for

a * so  for some positive so, normally the case in applications.

Theorem I is proved as an application of another result, Theorem 2 below, which

concerns linear recursion equations of convolution type, i.e., with constant

coefficients. To set the stage for this result, let X be a Banach space with norm I I

and

x = (XkI-O < k < )

-2-
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a sequence of vectors in X having exponentially bounded growth as k tends to -i,

i.e., there exist positive numbers M,y

Ix k ( 4M(y) , k = 0,-1,-2,-3,... (1.8)

Suppose further that Qk, k = 0,-l,-2,-3,... are bounded operators or X such that

0 kI. IQklPk < ( 1.9)

k=-

for some p satisfying 0 < p < y. Defining the bounded operator valued functions Q(z)

by
0

Q(z) B kzk  (1.10)
k=-

we see that Q(z) is an analytic operator valued function for Ijz > p. Equally well

0

C(z) -k (1.11
k.-

is an analytic X-vector valued function for izj < y. We let D be a circle of radius

d centered at 0 with y > d > p and we let C be a similar circle of radius c > d,

both circles oriented positively. Using certain results about the "transforms"

Q(z), (z), which we will develop in Sections (2) and (3), we are able to prove

Theorem 2. Let ixk1-- < k < -) satisfy the convolution equation

0

SQkXk+i= 0, j - 1,2,3.... (1.12)

with xk e X satisfying (1.8) for k 4 0. Let Q0 be nonsingular and assume that Q(z)

is "regular" in the sense that its singular points C, points such that Q()-I does not

exist as a bounded operator on X, have no cluster points in Icl > p and are such that

the null space of Q( ) is finite dimensional in each case. Let D, as described above,

be situated so as not to pass through any singular point 4 of Q(z) and let C be

-3-
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selected so that c > I for all singular points C of Q(z). Then, given any

a, c > a > p, and S a positively oriented circle, centered at 0, of radius 0, we

may assume without loss of generality that d < a and we have, for k = 1,2,3,...

Xk = T f zk-IQ(z)-lq(z)dz + -- L f zk-lQ(z) 1 q(z)dz - + (1.13)
C-S S

where
1 Q(¢) -( )d

q(z) = f - Izj > d . (1.14)

As a consequence we have, for some N = N(O) > 0,

Ixk,01 4 No
k , k - 1,2,3,... (1.15)

and

XkF = ) Res(z k-Q(z) lq(z)Iz , (1.16)
EZ(C,S)

where Z(C,S) is the set of singular points of Q(z) between C and S. If the

dimension of the null space of Q(W) is v , then Res(z k- Q(z) lq(z))I,, is a linear

combination of solutions of (1.12) having the form

k;kp, k = 1,2,3,... (1.17)

where P is an integer, 0 4 U < v , and p is a non-zero vector in X which is a

generalized eigenvector in the sense that

Q(M) (Op = 0, m 0,...w • (1.18)

In particular, if p < I and a is selected so that I > a > p, then

lim IxK = 0
k-HO

for all solutions {xk} of (1.12) satisfying (1.8) just in case all of the singular points

1; of Q(z) satisfy j < 1.

Remark. A theorem of F. V. Atkinson (see the original paper (1] or the treatment by T.

Kato in (4]) shows that Q(z), with Q0  nonsingular, is regular, as defined, if the Qk

are compact k -1,-2,-3,...

-4-
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In Section 2 we develop the machinery necessary to prove Theorem 2, but in a slightly

more general setting (allowing equations of the form )i Qkxk4-j - 0). In Section 3 we

prove Theorem 2 and sme other results for linear recursion equations of "unilateral"

type. Theorem 1 is proved in Section 4.

Theorem I extends to a class of functional equations involving an infinite delay

results already presented in [3] for certain equations with finite delay, namely those of

neutral and retarded type. It is likely that a modification of the methods used here would

provide alternative proofs of those theorems.

-5-
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2. A TRANSFORM4 THEORY FOR LINEAR RECURSION EQUATIONS

Here, as indicated earlier, we take a somewhat more general point of view than what is

minimally required in order to prove Theorem 2. Let X be a Banach space as in Section 1

and let us consider sequences

x = (Xk1I- < k < *}

of vectors in X having exponentially bounded growth as k tends to infinity in both

directions; there are positive numbers k
+
, k-, y+, y-, with Y ) y, such that

IxkI 4 M+{Y+)k, k = 1,2,3,... (2.1)

lxki .-(y )
k
, k = 0,-1,-2,-3,... (2.2)

Along with such sequences of vectors we consider sequences

Q = {Qk - < k < -} (2.3)

of bounded operators Qk X + X which satisfy inequalities

; Qkl(p+)k < _ ,

k= 1

(2.4)

IQ k I(P = IQ-k - j k <

k
-  

k=O (p

where P +,P- are positive numbers with

P+ > Y+ ) y > p- > 0 • (2.5)

From this it is clear that the convolution product defined by

(Q * x), = k Qk'k+£

is convergent for every integer L and we may consider the equation

Q * x = f (2.6)

where

f = (f k1-- < k <*

is also a sequence in X with certain properties to be discussed subsequently.

-6-
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In agreement with standard usage we define the "z-transform", or discrete Laplace

transform, of x by

( -k +
x k Z k € + (x,z)). {zI > Y+ ,

k= 1

E(xz) = (2.7)

xk X_kz k (R t-(x,z)), 1z' < Y"
k=0

When x - [xk} is clear from the context we will simply write t(z). Clearly *(z) is

analytic for Izi > -+ and for Izi < Y-. In certain instances &(z), as defined in one

of t|i.se regions, is an analytic continuation of &(z) as defined in the other. The most

basic example, for X - E1 , concerns the sequence

= k- 1 '
x k - - k <

where A is a non-zero complex number. Here

+

and we see that for IzI > 1Xl

Iz A k + X 2 + * .( 1z 2 3 z 1 X/z z X
z z

while for 1zi < {X{

1 z z 2 1

1 - - " ....

We will see as we proceed that those cases wherein + (z) and E-(z), as defined by

(2.7), are analytic continuations of each other, correspond, if Q . x = 0, to rather

particular solutions of that equation.

The z-transform is readily inverted by taking C+  and C- to be circles with

poitveraiic
+

> + - -
positive radii c + > Y+, c < Y-, centered at 0, positively oriented, and verifying

that

-7-
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_7_I C + (~ k l z k = 1,2,3,..

Xk = (2.8)

1 f &(z)dz k = 0,-1,-2.
2wi e- k+1

If we set

C + -

and use Cauchy's theorem, we see that

= __._ j C(z)zk- 1 dz, -- < k < (2.9)21i C

For Q as in (2.3)-(2.5) we define a variety of "discrete Fourier transform"

kQ(z) = Qkzk

k=-

analytic for P_ < zf < P+. There exists, as one would expect, an important relationship

between Q(z), t(z) and the z-transform *(z) of f when Q,x and f satisfy (2.6).

In order to explain this relationship we need to introduce a certain decomposition which we

will call the "internal-external" decomposition.

Let D = D+ - D- be a contour similar to C described above, D+  and D- having

radii d+ and d-(<d+), respectively. Let h be a complex-valued function defined and

square integrable on D. Let

_() - 1 h( ) 4 Ia1 > d+, lal < d- , (2.10)
27ri a- z 4

h(z) =I f h()d4, d- < Iz < d , (2.11)

which we call the exterior and interior functions (relative to the particular contour C)

associated with h, respectively analytic in the exterior of D and the interior of D.

From familiar results for Fourier series it is easy to see that if De, D are contours of

the same sort as D, lying a distance e in the exterior, interior, respectively, of

-8-
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+ (z) = fk
z
-k

k=1

be holomorphic for IzI > Y+" Assuming

0
kQ(Z) = Qkz k

k=-

Q0  nonsingular, is holomorphic for IzI > p-, 0 < p- < y-, the z-transform F(z) of the

unilateral solution x of Q * x = f with initial history x- is such that the transfform

of

x = {X k1 4 k < ®}

is given by

( 1 Q( 1 ()dr. + __ Ql I -l(3d2
+( = 2wi + z- 2ii D- z(3.2)

where D+  and D- with radii d+  and d- are selected so that d+ > y+ and Q(z) is

nonsingular for IzI ) d+  while p- < d- < y-, and the formula (2.23) is valid for

Izi > d+ .

Proof. We first construct the solution in the unilaterally homogeneous case wherein

fk = 0, k = 1,2,3,.... Let D- have radius d- as indicated and let us define

0(z) = - f l)- d
+ (Z) Q(z)-1 f-

D

Since go is nonsingular, there is a positive number r such that Q(z) is nonsingular

for IzI > r. Let C = - C" be such that c+ > r and y- > C> p-. Let

+ (z), Iz >+
0

I-(z), IzI < Y-

and let us compute, for w exterior to C,

-20-
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3. UNILATERAL EQUATIONS AND THE PROOF OF THEOREM 2.

Unilateral equations are equations of the form Q , x = f wherein

Q --{ k - <  k < ®

has the additional property that

Qk = 0, k > 0,

and thus the equation takes the form

0

) Qkk+j fj•
k=-

We will say that x is a unilateral solution if this equation is valid for

j = 1,2,3,... (otherwise x is a complete solution, if the distinction needs to be made;

up to the present we have referred to complete solutions merely as solutions). We will say

that x is a unilateral homogeneous solution, or just that it is unilaterally

homogeneous, if fU = 0 for j = 1,2,3,....

For unilateral equations the natural problem is the initial history problem wherein we

assume that for k = 0,-1,-2,-3,.. .xk is given a priori. Ordinarily we accept any such

sequence, call it x-, for which &-(z) (cf. (2.7)) is holomorphic for IzI < y-,

without being concerned about the values of (Q * x)j for j 4 0. The sequence x is

continued for k = 1,2,3,... by enforcing (3.1), for a given f+, i.e.,

{fjh = 1,2,3,..., for j > 0; to ensure this continuability we assume that Q0  is

nonsingular. The problem, then, is to characterize the continuation sequence

X+ = {Xkik = 1,2.3.... }

in terms of x-, f+ and Q. The following theorem does just that, in terms of the

transforms of those sequences.

Theorm 9. Let x- = {XkI-- < k < 0} with z transform

0
-(z) = I Xk

z

be holomorphic for Izi < y- and let

-19-
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points of Q(z) between the two contours. Thus, as we should expect, there is an

intrinsic relationship between solutions of Q * x = 0 and singular points of Q(z).

In order to distinguish the concept of homogeneous solutions as developed here from

the more restricted one to be developed presently, we will refer to solutions x of

Q * x - 0, which means (Q * x)j = 0 for - < j < - or equivalently, that

Q(z) (z) - 0 (2.33)

for the z-transform, &, of x, as completely homogeneous solutions. if equation (2.33)

is true for an appropriate contour D, for z on that contour

Q(z)&(z) = Q(z)&(z) + Q(z)(z) = Q(z) (z)

Now, for z in the interior of D,

~1f Q(;)&(;)d;
Q(z)K(z) - D

and thus Q(z)t(z), initially defined only for P- Iz < Y" and Y' < z < P', which

includes D, must, as a consequence of the identity theorem, have the analytic

continuation

Q(z)t(z) = f-. - z

throughout the interior of D and thus, in fact, Q(z)&(z) is holomorphic for

P < IzI < P+- Since UCz) is holomorphic for jzj < Y- and for Izi > Y", which

intersects P- < jzi < P+ in two open annuli, we can summarize in

Theor 8. The sequence x is a completely homogeneous solutions, i.e., (Q * x)j = 0

for - < j < -, if and only if #(z) -- Q(z)E(z) is extendable as a holomorphic function

to P- < Izi < P+. If the set of singularities of Q(z) has a connected complement, then

(cf. (2.7)) t (z) and -(z), holomorphic, respectively, in Izj > Y+  and jzj < Y-;

are each analytic continuations of the function Q(z) *(z) and hence analytic

continuations of each other.

-18-
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for z exterior to D. Then for w between C and D, relative to C,

Q(w)n(w) I t Q(z)n(z)dz = f Q() Q(C)-'6(4)dC dz
2i z - w 4 Z- W z

1_ 1 1 () c
= - f I Q(.)L - ' Jdz d4,2  z r - ;  E d

41r D CZ W

" C Q 1 2 , W C 0 + Q(w)n(w) (2.32)
2iD ~- iiD

Since Q(w)n(w) is holomorphic on C, we conclude that it is internal relative to C.

Then, for z exterior to C,

w i - Qww"

(uin (23),( nlw) ( D
= (using (2.30), (2.31)) - J - dw- n(z) = (! C)(z)

since n, being external relative to D, is also external relative to C. This completes

the proof of Proposition 7.

Letting C tend to D, we conclude that both ID and ID are projections. We may

think of WD as extracting, in view of (Horn) in the proof of Theorem 5 (taking

*(z) = Q(z)g(z)), a "homogeneous" part of 9(z) in the sense that

Q(z)(H D (z) - 0

and thus the sequence x. whose z-transform is ( D")(z) satisfies Q * XD = 0.

Correspondingly, ID extracts an "inhomogeneous" part, (R D)(z), of (z), for which

Q(z)(H D)(z) - (z)
A0

and the sequence xD whose z-transform is (R DI )(z) satisfies Q * x - f. Proposition 7

shows that, as the contour D expands, the homogeneous part grows larger in the sense that

the range of WC includes that n D when C is exterior to D. Whether or not nC and

iD are different, or agree, respectively, depends on whether or not there are singular

-17-
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1 f I z-d - -'" -f 7.z

(U1 D)(w) - ((I -D ))(w) 1 '
1  d -I QC

where Q(z)C(z) is the external part of Q(z)4(z) relative to any contour K with the

properties described earlier, and, as noted earlier, Q(z)t(z) is the internal part of

Q(z) (z) relative to C. When Q(z) "1  is holomorphic on C and on K and on the

annular regions between them, which includes D, both - and ^ can be interpreted

relative to the contour D over which the integration is performed. We will assume this

to be the case for purposes of defining AD and i as above. Thus UD and HD are

defined entirely with reference to the contour D.

Now let C, unrelated to C in the previous paragraph except that we continue to

assume (2.16), (2.18) hold, be a contour exterior to D, still of the same general typel

C = C+ - C-. Assuming no singularity of Q(z) lies on C either, we can define RC and

HC for the contour C. Then we have

Propstion 7. For w exterior to C

(RCHD M )-(1D&(w

Remark. Then also, quite clearly

(nC n  )(w) - (nC&)(w)

for

((I - fc)(I - D m(w) 1 - + + D
)
&
)(w )

S((I -WC)o)(w) - (nCo)(w)

Proot of Proposition 7. Let

e(€) - Q( ) ( ) (2.30)

relative to D. Then let

__L f Q(r) 1 8()d;. (R ) (z) (2.31)
Dvz D z -D

-16-
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Let KK+ -K be such that y- < k- < d- and d' > k+ > Y+. Then

1 lz-1 llz= 1 z-1 Q~~ l
I f _____ -1 f~)Qz R(zEd f -()& dz (2.27)

2 i D W Z 4 2 Dw-z K z d (

Now the Cauchy formula gives, for z lying between C and K,

Q(z)(z) )( ) d (2.28)
2ri C K (

and then, for w exterior to D,

I f Q(z) - '*(z)dz = 1 fQ(z)-  
. Q() (g)dr + ((z)&(z)dz (2.29)

2vi w - Z 2wi D W -Z 2wi C - z

where we have solved for f in (2.28) and changed - z to z - C in the denominator of
K

its integrand before substituting into (2.27) to get (2.29). Now, by definition,

I-Qlz)-1 -1 Q(;)(C)dr d -::I ) f __ 
"

I2W1D w -z 2wi C- z 2iri DW - QZ)(zd

where - denotes here the internal function relative to C. Since w is exterior to D

1 ~ ~) Q(z)&(z)dz =~w
f Qlzl-) z~zd , (w)

2wi w - z
D

and therefore

&(w) = f Q(z) (f(z) -IQ(z)(z)) dz
D

as claimed, and the proof is complete.

Some interesting results devolve from the equation (2.23) which deserve a few

paragraphs' notice. We define

(H ~ ON I (z) Q(z)&(z)dz(I )(w) = i w- z______

D 2iri D 0

-15-
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Now, using the formula (2.21) for t(z), still for w in the interior of D,

Q(w-w) Q(z) f(€)-(() + *( ))dd
42 2-wv

r Wd.( Q() d
4w' C 0

I f I (2.26)

2- -~ J -J -- -

2iD C-Q 2w DC w

Combining (2.25) with (2.26) we have

-11 Q(C ) + -(1))dC
Q(w) M4iw) - Q(w)&(w)) -!-- D C -

from which we conclude that (2.22) is internal relative to D, as required for the

theorem. Then the formula (2.21) for (z) immediately gives the result (2.23), for, if

Q(((€) - Q(¢)E()) is internal relative to D,

1 ( )-(4(v)_ - Qk(O)W())d -.o
2wi D -

for z exterior to D. This completes the proof.

The formula (2.23) is, in fact, valid for all &(z) corresponding to solutions x

of Q x f. Indeed we have

Tbeorem 6. Let x be any solution of Q * x = f, so that Q(z)E(z) - #(z), where #(z)

is analytic for izi > YI' and Izi < Y- and Q(z) is analytic for P- < Izi < P+# with

the inequalities (2.5) applying. Let D and C be selected so that (2.16), (2.18) are

valid, with no singularity of Q(z) occurring on D. Then the formula (2.23) remains

valid with Q(z) (z) denoting the internal part of Q(z)E(z) relative to C.

Proof. From Corollary 4 we see that &(z) is also analytic for IZI > Y+ and for

-14-
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Proof. For w in the exterior of C, the external part of Q(w)4(w) is

Qlwl)tw) 2 f Q(z)(z)dz _ (from (2.21))

z) f Q( )- (C) dtdz = - 1 Q(z)dz

(-- -( z)(z__)__(_-I_(_)4w C 4 D

2= 1 j Q). 1  + -- )dz Q(l)1Cllw-) dC = *1w1

DC

because ._.1 and Q(z) are holomorphic in the interior of z,
N-O

1 (Q(z)dz Q( )

2iz-¢

and * is external relative to D. The same process gives

_ Q- -.-Qz. -Q.() d-dzjLx - 0 (2.24)

4w2 C W 'Z D z....2D C (w )(z

because is holomorphic in the interior of C and , is internal relative to C.

W- Z

Thus

Q(w)(w) - (w)

and this implies g z x - f as required.

Nvlet v lie in the interior of D. Since * is internal relative to C and

is external relative to D

1 f1 r f(Q) 1r - i (*() + ,(0))dC (2.25)

-13-
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Now, using the formula (2.21) for t(z), still for w in the interior of D,

Q(w)&(w) I - 1_42 f ) Q 1 (,(€) + ())dr dz

4-2 C - Dz C

f "--f2 Ic Q(Z)(7 -I - )dZ Q(O) - + f(O))d

W Y_ #;())d. 1 Q()-1(() +

2wi Ii f W(2.26)
D D

Combining (2.25) with (2.26) we have

-II f Q() -1( + O())Q(w) Ml(w) - Qlwl(w)) = 2wi D C- W
D

from which we conclude that (2.22) is internal relative to D, as required for the

theorem. Then the formula (2.21) for E(z) immediately gives the result (2.23), for, if

Q()(W() - QW(.)(C)) is internal relative to D,

1 1€Q(C)"(1 - Q(Z)4(C))d - 0
2si D z - C

for z exterior to D. This completes the proof.

The formula (2.23) is, in fact, valid for all t(z) corresponding to solutions x

of Q * x - f. Indeed we have

Ibeorim 6. Let x be any solution of Q , x = f, so that Q(z) (z) = O(z), where #(z)

is analytic for Iz1 > Y+ and Iz1 < Y" and Q(z) is analytic for P- < Iz < P+, with

the inequalities (2.5) applying. Let 0 and C be selected so that (2.16), (2.18) are

valid, with no singularity of Q(z) occurring on D. Then the formula (2.23) remains

valid with Q(z)&(z) denoting the internal part of Q(z)&(z) relative to C.

Proof. From Corollary 4 we see that E(z) is also analytic for Izi > Y+ and for

Izi < y--

-14-
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Proof. For w in the exterior of C, the external part of Q(w)g(w) is

Q1)w) f(z)Cz)dz (from (2.21))

1 2- 1 0Q~) j Q(C) 1 (c) + ;)dz

4.! C w-zDz

Now

"--4w2 ] D z _ r. dCdz f. - f-,2 D (w -Q(z - )dz''~l¢d

a- )zw~ Q(z) Q(C) 1 ~~ - (z Q(C) -1 CI

f f Q(z)(--!- + I d Q(C) d4~ - O(w)
DC

because - and Q(z) are holomorphic in the interior of z,w z

I1 Q(z)dz
i

b  211 z - C

iC
and is external relative to D. The same process gives

16. ! () 1 () 1 (dCdz f ) 1 f ( 0 (2.24)
42 C" - z J z 2wi wv - C 27ri~ W Z

because is holomorphic in the interior of C and is internal relative to C.

,'"W - Z

Thus

Q(w)&(w) - O(w)

and this implies Q . x - f as required.

Now let w lie in the interior of D. Since * is internal relative to C and

is external relative to D

*(w) f - + O(Qi)d (2.25)

-13-
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yL |

".1k

and then

S-Z + yz- -kxk+ x ,) 01

Then since J(z) and n(z), given by (2.17), are both external functions relative to

D, (2.15) follows and the proof is complete.

Proposition 3 tells us, given Q and x, a fairly elegant way to compute

f = Q * x. Now let us reverse the process. Let us sup&,ve that the sequence

f = {fk e Xj-- < k < -) has z-transform #(z) external rc*%tive to D. What may we then

say about those sequences x - SXk  ( Ik < 1 such that 1 * x - f? We have

Theorem 5. Assume Q(z) has isolated singularities. Let C lie in the extension of D

with no singularity of Q(z) lying on D. Let f have z-transform #(z) external

relative to D. Let Q(z), the discrete Fourier transform of {Qk e L(X,X) I- < k <

be analytic for p- < Izi < p+ and let the radii of C+ , C-, D, D7 satisfy (2.16),

(2.18). Let *(z) be an arbitrary function interval relative to C. Then the sequence

(Xk e Xl-. < k < -} with z-transform

-(Z -L f Qd (2.21)
"2uiD

. defined for z exterior to D, satisfies

Q* x f

Moreover, the function

Q(Z)-( (z) - Q(z) (z)) (2.22)

is internal relative to D and thus, also,

f Q1-((C) + QlClEl()d 12.23)
D 

z

where Q(Z)t(x) denotes the internal part of Q(z)4(z) relative to C.

-12-
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Proof of Proposition 3. We will compute the coefficients y,, - * < L < m, of the

expansion of the function

n(z) - Q(z)(z) , (2.17)

computed relative to D. To t'.is end, let C = C+ - C- be such that the radii, c+ and

c-, of C+  and C', respectively, satisfy
"1 C + --

d
+ 

> c > , p < c" < d (2.18)

Then

2i 4(z)z dz 2 z dz -dz
C 4wC D

= - -' f f dzd.

4w
2 D C

For z e C and C e D

z - 1 -2 +zL-3 2 zL-4
z -

so that

y= - ..-2. f ~ j ~z-' --- f -2zQl()l(c.)d

4w D j-0 C D

21 ' - -..2... - (y + +y- (2.19)

D D

On D+, letting m - j -k,

k) x. C.() -k ) (. (-0

k w~)k.1 m-~ k-I-nQm~ ~ m. (.0

Substituting (2.20) into the integral for y+ in (2.19) we have

+ x

yjE =1 ( Qkk)f+ d4= Qk k+ztm-- k-i1-M D k-1-i

A similar computation on D- gives

-11-
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. .

z exterior to D, by

hk f h(z)zk-ldz
2 D

Similar considerations apply to func-ons internal relative to D.

Proposition 3. Let x, Q, as described at the beginning of this section, have transforms

.(z), Q(z) and let *(z) be the discrete Laplace transform of Q * x. Then

-(z) = Q(z)(z) , (2.15)

i relative to any contour D = D- D with

p > d > y+, p- < d7 <y (2.16)

Remark. In other words, the "z-transform", O(z), of the convolution Q x is the

external function, relative to D as described, corresponding to the ordinary product

".. Q(z)t(z) of the discrete Fourier transform of Q - (Qk and the discrete Laplace

transform, or "z-transform", (z), of the sequence x = {xk}.

Corollary 4. For each c > 0 we can find M + (e), M - (e) such that

+ + I{ (E)(Y + C) , £ 1,2,3,...

If I IQ xl l

PM-cily - c) , £ = 0,-1,-2,-3,. .

Proof. Let £ > 0 be selected and let D, as in Proposition 3, be chosen so that

Y Y + E > d+ > y+, y -e < d . Let C C + -C with
y+

C+  Y + f, c-y - C

Then (2.9), (2.10) give

f f2"'C " *(z)z
t
'ldz = -4 C ; zL-1 j Q(w) (w) dwd .

it 2iC 41F2 C D -W

Since the integral over C- vanishes for I = 1,2,3,... and the integral over C+

,-. vanishes for 1 - 0,-1,-2,-3,..., the estimates follow immediately.

-10-
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*D, then as e + 0 the functions

converge in the L2 10,2w) norm (z - fIle i e , 0 < 6 < 2w) to functions h, in that

space (we may also write h, h 6 L2 (D) unambiguously) such that

h-h + (2.12)

We refer to hiD and hi, as the external and internal parts of h, respectively. This

defines a decomposition of L2(D)-

L 2(D) _ L2(D) + L2(D) (2.13)

and the (non-orthogonal, in general) projections - they are readily seen to be that -

P, P defined by

P(n)h i(h) - 9

mapping L2(D) onto 2). 2 (D), respectively, may be shown to be bounded and, clearly,

P+ P on L2(D) (2.14)

If h is analytic in the exterior of D with square integrable limiting values on

D and if h - h relative to D, then we will say that h is an external function, or,

simply, that h is external, relative to D. Internal functions are derined in a similar

manner. Thus for external functions

h(z) - - hl -)dC

for z exterior to D while for internal functions

h(z) - (Ph)(z) - f h()d

for z in the interior of D. If C lies exterior to 0 and h is exterior relative

to D, then it is also exterior relative to C. If h is exterior relative to C and

analytic in the exterior of D, then h is also exterior relative to D. If h is

external relative to D then h(z) is the z-transform of the sequence hk defined, for

b-9
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I f Qz) 0o (z)dz
Q(W)o (w) i - -

0 2Iti -z

=I --
2  

+ _i_ f - dz - 2i " Q(z)&-(z)dz

The first integral on the right hand of (3.3) is, for Iwi > c+0

dz
2 -f 4 w - z)(z dr.S4w
2 D

and therefore, still for lwi > c+0

1 Q(~l)'(~ld¢ 1 Q(:l)'Czldz
Q(w ) E ( - T --'r" f- - -0

0 w D wVZ2r

since the integrand Q(z (z)/w - z is holomorphic on and between D- and C-. It

follows that (Q(wl)lw)) 0, i.e., that

(Q O)k = 0, k - 1,2,3,...

and we conclude that x0, of which E0 (z) is the z-transform, is a unilateral solution of

the homogeneous equation.

Now if fk - 0, k - 0,-1,-2,.-., then its z transform is, for IZl >

+) - fkak,

k-i

and #(z) - -(z) vanishes identically for 1zI < Y-. Taking D+  to have radius d+

large enough so that no singularities of Q(z) lie in the set Izi ; d+ and selecting

d- so that no singularities of Q(z) are on D in the formula

)-1 2w (z - ()*- d
* 2iriD

-21-
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the integral over D- vanishes because *(C) - 0 there and thus

1 Q(0C)I (4)dC Q -1+(,d()=1 ___l-__l__d_; 1 , _O(c)l-* (rjd¢6(z) = f 1D ""2i;D

21triV+ z-C

for all z exterior to D. For Izi < d- we must have C(z) - 0 because

Q()- 1+ (4)/(z - .) is holomorphic for jzj > d4 , and we conclude, applying Theorem 5,

that C(z) is the z-transform of a sequence x, such that x - {0} and Q , x - f.

Then x = x0 + x, must be the unique unilateral solution of Q * x = f with the given

initial history x- and, clearly, +(z) - C;(z) + &+(z) satisfies (3.2).

The foregoing development of a transform theory for Q * x = f contains, we believe,

notions and results which may prove interesting and useful in a number of different

connections. For us here, the main point is to be able to supply the

Proof of Theorem 2. We start with the formula (3.2) which, specialized to unilaterally

homogeneous solutions, gives, with D in the statement of Theorem 2 taking the place of

D-,
(z) = i Q()C(C)d Q(z)-lq(z)

D

the radius, d, of D satisfying p < d < y

Next we let C be a circular contour of radius c > d, positively oriented and

centered at z = 0. Since Q0 is nonsingular, we may suppose c chosen large enough so

that all singular points of Q(z) lie in the region Izi < c. Then, from (2.9), the

coefficient vectors xk ,  k - 1,2,3,..., of x+ are given by

Xk I E+ (z)z k- dz
C

1 (z)zk-idz + f +(z)zkidz x + xk,O
C-S S

Then, in view of the formula (3.4), we have (1.13) with q(z) as described in (1.14). The

-22-
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estimate (1.15) is then immediate since IzI = a on S and [4+(z)J is bounded on S.

The formula (1.16) is an immediate consequence of the calculus of residues, of course.

Let 4 be a singular point of Q(z) lying between C and S. We assume that

Q(z) - 
Ihas a pole of order v at the point ; so that, with o(z) holomorphic near €

Q~z)-1Q-1 ______Qlzl- QolZ +- + ... + - V

If we let F; be a small circle, centered at C and containing no other singular points

of Q(z) in its interior or on F itself, then the residue of z k-I+(z

zk-IQ(z)-lq(z) at z = C is

r = zk- Q( z)-q(z)dzre-2w r
F

I f "k-1[ (z)1 + -" I ,,Q (.,
),~]qcz)dz

* 10 z 1k -i- )

f _ + ... + - jq(z)dz
2i F (z - v

k 1L k-1[ Q-2 Q-V uq )d

,,, -__ **k1 q() + fT z [' + V

C k-1q(4) + f QZ-2 ~)* *+ - QV j j_ (zkl q(z))dz
- r (z -)+v- z - d1

= _-1 ,q(r. + d (k lq~z))I1_
-1 L2 dz

1 Q 2 k-
+ f -2 4 

+  
+ -VV-2] 2 (z'q(z))dz

(V - 1)(V - 2)(z - 0 dz

- k-1q 1)k-2q k-I V
V-,. kq(0 + _21((k -1);-q( + k q (0)

+ + (- ((k - 1)...(k - v + 1)C k-2q(r.) + ... + k- q (v-1)
(v - )

-23-
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= l[^ [ q(;) + q ___)+____ (.-
'i 2qv () 4. + ))

-I Q° ( V

k2^Q-V (,,-2 )

• (k - 1)€k
2 [2q(C) + '+ -( 1 o]

"" )k-v -v

+ ... + (k - 1)...(k - v + 1)c (v - )E q(C) (3.5)

From this it is clear that the solution sequence Xk,F is a linear combination of

solutions of the form (1.17). It remains only to show that the vectors

p - q(1) , j - 1,2,...,v, I - O,...,v - 1

agree with the description (1.18), of the vectors p appearing in (1.17). A brief

inspection will show that this is the case, provided we can show that

-Qk -j 0, k = 0,...,j - 1, j =1,2,...v

* To this end we observe that since

Q(z)Q(z) - I - I ,

(Q(z)Q(z)'I V ) Q V(z)Q(z)-I + Q(z)(Q(z)-) = 0

(Q(z)Q(z)') - Q(z) VVQz)- I + 2QV (z)(Q(z)-) + Q(z)(Q(z)-) - 0

etc., etc., the negative indexed terms in the Laurent expansions must be zero. Starting in

each case with the coefficient of the most negative power of z, we find that the

coefficients are, respectively as the equation is shown above:

o-v'  1-v + Qov.+1'2 -v + QIQ-v+I + QoQ-v+2.'
Q o-v, v + (-v + IQoQ+, 2Q Q + (-V + 1)Q Q + (-v + 2)Q2-0v+2

o -v + 2(-v + 1)QQ 1  + (-v + 1)(-v + 2) Q0V+2'"'
-'QO-Q 2Q2- +)1Q0+ -v ""

etc., etc.

and from this it may be seen that

Qo 0 QO-V+i ' QO V+2 -o,0,..... o 1 0

Q1Q v O,0' QIQ-V+2 - O,.'g L2 = 0

Q2QV - 0, Q2Q-% 1+ ... Q2 Q-3 - 0 ...

-24-
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and since Qk = (k) (;)/kk we have the desired result. With this the proof of Theorem 2

is complete and, with it as a tool, we may now turn to the proof of Theorem 1 which was the

original motivation of this paper.

-25-
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4. PROOF OF THEOREM 1

With x(t), W(t,s) as in the statement of the theorem, for t > 0 we have

t t (j-1)T

x(t) = f W(t,s)xls)ds = f W(t,s)x(s)ds + f W(t,s)x(s)ds
- (j-I)T -

where j is the largest integer such that (j - 1)T ( t. For I = 1,2,3,..., we define

xI(T) = x((1 - 1)T + T), T e [0,T] (4.1)

Then, with t = (j - I)T + T, s = ( - I)T + 0, T,a e [0,T],

T

x(T) - f W(( 3 - 1)T + r,(j - I)T + o)x( a)da
0

j-1 T
- f J W((j - 1)T + r,(X - 1)T + O)x t(o)da = 0 (4.2)

£=-- 0

Using the periodicity relation (1.4), we have

W((j - 1)T + T,(£ - 1)T + 0) = W(T,(L - j)T + 0) E Wxj(T,0)

and (4.2) becomes

T -1 T
x.(r) - f W0 (T,O)x (a)da - ) f Wk(TU)Xk+j(o)da = 0. (4.3)

0 k= - 0

If we now define the operators P0 , Pk' k = -1,-2,-3,..., for x e 2[0,T], by

T

(P0x)(T) - x(T) - J W 0CT,o)xla)da
0

T
(Pkx)(T) - - f Wkl(',a)xla)da

0

it is classical ([5]) that P0  is bounded and boundedly invertible while the operators

Pk" k = -1,-2,-3,..., are all compact. Multiplying by (P0 )
" I, we see that, with

Qk= (P0)-IPk Qo I,

-26-



0

k.QkXk+j ( (Q * x)j) = 0, j = 1,2,3.... (4.4)

is the expression of (4.3) as a linear recursion equation in the Hilbert space 2[0,T].

From (1.3) it may be seen that (1.9) is true for

p > eU

and (1.5) is true with

14 = -Zli2y

and

e- VT

Thus, if V > v, p < y and, as required for Theorem 2, (4.4), with Qk, xk defined as

above, converges for (zi > p while (1.11) converges for Izi < y. From the definition of

the operators Pk, k = -1,-2,-3,... and the boundedness of (P0 )
- , the operators Qk'

k - -1,-2,-3,... are all compact. Therefore

Q(z) = I + Q1 (z)

where

-1

Q1 (z) = Q k ,

k-

being uniformly convergent in any region IzI > p + 6, 6 > 0, is compact. The theorem of

Atkinson ([1],14]) then applies to show that Q(z) is "regular" in the sense described in

the statement of Theorem 2. Thus Theorem 2 applies and gives the continuation sequence

x+ - {x kk - 1,2,3,...} in the form (1.13). With O as in the statement of Theorem 2, we

then have (1.15) for p < o i.e., with e- OT = a, for 8 < V, as claimed in Theorem 1.

We turn our attention then to

Xk-F ' . Rs(Q(z)-1 q(z) k-i)j..'
ez(CS)

as already discussed in the previous section, where we have noted that the contribution
AT

to Xk,F from each singular point must take the form (3.5). Setting e A C, it
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remains only to show that when the Xk F e I([O,T] are taken to be the successive segments

of a function xF(t), consistent with (4.1), the solution forms shown in (1.17) for the

recursion equaiton correspond to solutions of (1.2) having the Floquet structure in

(1.1). We have already struggled hard enough with poles of Q(z) - 1  of higher multiplicity

in Section 3; let us be content here with a simple pole, leaving it to the more dedicated

among us to verify the details in the other cases.

We consider, then, a solution of the form

k-iX k,4 = k-p

where p e I[0,T] with

Q()p = 0 • (4.5)

Let p(T), 0 ( p 4 T, be the functional representation of p. Then (1.18) becomes (cf.

(4.13))

-1 T
;(T)- w0 (rc)P(*)do - & f W.(,a)(o)da 00 

j- 0

It is evident that p() is continuous on (0,T). Now

-1 T

;(0) = & f W.(0,o)p(a)da
j=-a 0

-1 . T
- 1 4 f W(-T,(j - 1)T + a)p(a)da

j=- 0

while

0 T
;(T) I C ' f W(o,(j - I)T + a)p(a)da

i--a 0

=[ ' jT w(-,(j - I)T + a)p(a)da] - (0) - e P(O)

J- 0

It follows, therefore, that if we define, for t = (j - 1)T + T
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x Mt - 0- 1 F(T), =

the resulting rn-vector function of t is continuous with respect to t. If we now let

p(T) - e-X ;(T), T e [0,T]

and then let (cf. (4.1))

p(t) - p((j - 1)T + T) - p(T)

we have

p(t) - p(t + T)

and

x Ct) r. j1 e ATp(t) - e X(-TT)p(t) -e xtP(t)

therefore has the formed claimed in Theorem 1 for v -1. With this we will regard the

proof of that theorem to be complete.
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r, 11, ii > 0

W(t + T, s + T) = W(t,s)

EW(t,s)K 4 2e-I(t-s),ts real

idmits, for each I < P, a decomposition, applicable to a wide class of

;olutions x(t) for t > 0,

x(t) = XF(t) + Xa(t)

ihere, for some B =B(),

lxa(t)l 4 Be- , t > 0

ind xF(t) is a linear combination of "Floquet type" solutions

tqeAt p(t),q( o) e z, A e C, Re(A > -a

?(t) being a continuous n-vector function such that

p(t + T) = p(t) .

The theorem is proved by converting the above equations to a convolution type

linear recursion equation

0
. Qkxk+j = 0

k=--=

in L;[OT] and studying this equation by transform methods. In the process

we examine some general properties of equations

. ,Xk+j o

within the same transform framework.
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